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Electronic g factor and magnetotransport in InSb quantum wells
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High mobility InSb quantum wells with tunable carrier densities are investigated by transport experiments in
magnetic fields tilted with respect to the sample normal. We employ the coincidence method and the temperature
dependence of the Shubnikov–de Haas oscillations and find a value for the effective g factor of |g∗| = 35 ± 4
and a value for the effective mass of m∗ ≈ 0.017me, where me is the free electron mass. Our measurements are
performed in a magnetic field and a density range where the enhancement mechanism of the effective g factor
can be neglected. Accordingly, the obtained effective g factor and the effective mass can be explained in a
single-particle picture. Additionally, we explore the magnetotransport up to magnetic fields of 35 T and do not
find features related to the fractional quantum Hall effect.
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The narrow-gap III-V binary compound InSb is well
known for its combination of a light effective mass, high
electron mobility, strong spin-orbit interactions, and a giant
effective g factor in the conduction band [1–6]. These unique
properties are interesting in view of potential applications
such as high-frequency electronics [7], optoelectronics [8],
and spintronics [9]. The large g factor with a bulk value of
|g∗| ∼ 51 could be advantageous for hosting a topologically
nontrivial phase through proximity-induced superconductivity
[10,11]. This has led to research efforts in nanomaterials and
sophisticated nanoconstrictions. In two-dimensional systems,
so-called coincidence measurements have been used in InSb
quantum wells (QWs). Here the magnetic field is tilted with
respect to the sample surface normal to tune the relative
strength of Zeeman and Landau-level splitting [12,13]. The
effective g factor has been measured in nanoconstrictions
too, such as in nanowire-based quantum dots [14,15], and in
QW-based quantum point contacts [16,17].

Nevertheless, most of the previous experimental results
focused on the situations of special quantum regimes or with
relatively low Landau-level filling factors where exchange
effects dominate. These lead to an effective g factor far off
from the predictions of k · p theory. For example, in InSb
nanowire-based quantum dots, the effective g factor is more
than 40% larger than that in the bulk material because of the
level-to-level fluctuations arising from spin-orbit interaction
[14,18]. Caused by the confinement of the nanoconstrictions,
the effective g factor measured in chemically etched defined
quantum point contacts (QPCs) shows strong reductions and
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large anisotropies [16,17]. Limited by the low carrier mobil-
ities, the coincidence measurement in a tilted magnetic field
can only be accomplished at a relatively low filling factor. The
large spin polarization leads to a substantial enhancement of
the g factor as a result of exchange interactions [12,19]. For in-
stance, in Ref. [12], the effective g factor is enhanced linearly
as a function of spin polarization over a range of filling factors
ν = 2–7 Different from the results listed above, the bare g fac-
tor deserves to be investigated more for the research related to
topological superconductivity, because the band gap should
be opened by the Zeeman splitting while applying a relatively
small parallel magnetic field [20]. Efforts have been made
for this purpose. For example, Ref. [13] arrived at extracting
a bare g factor of ∼39 in a 20-nm-wide InSb/InAlSb QW
by extrapolating data measured in the finite spin polarization
regime to the zero polarization limit. Furthermore, recent
measurement results from purely gate-defined quantum dots
fabricated on InSb QWs present the estimation of the effective
g factor of a value between 26 and 35 [21]. This is close
to the bare effective g factor resulting from the k · p theory.
However, the accuracy is still limited by the quality of the
devices. In the experiment presented in this paper, we show
a precise measurement of the bare g factor by performing a
coincidence measurement for InSb two-dimensional electron
gas (2DEG) confined between InAlSb barriers. The high
electron mobilities (up to 3 × 105 cm2/V s) enable us to
investigate the dependence of the Shubnikov–de Haas (SdH)
oscillations on the tilt angle of the magnetic field relative to
the plane of the 2DEG in a relatively small total magnetic field
and for large filling factors. With the combination of a precise
measurement of the effective mass, the effective g factor of
the InSb 2DEG turns out to be |g∗| = 35 ± 4, which can
be quantitatively explained with a single-particle calculation
based on k · p theory. Finally, we present electron transport in
magnetic fields as high as 35 T. We find no signatures related
to the fractional quantum Hall effect which asks for further
improvement of the sample quality in the future.
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FIG. 1. (a) Layer structure of the QW. (b) An optical image of the Hall bar sample. The measurement setup is added schematically. (c), (d)
The B dependence of ρxx (blue) and ρxy (red) for VTG = 0 V and VTG = −1 V are presented, respectively. The filling factors are labeled on the
plateaus of the Hall traces or the minima of the SdH oscillations. Inset of (c): the zoom-in of (c) in the small magnetic field range. The axes are
the same with (c) and (d). (e), (f) The detailed transport characterization at 1.3 K with ρxx (e) and ρxy (f) as functions of VTG and B. The filling
factors are labeled in white color on the Landau Fan diagrams. (g) The blue line and squares show the carrier density of the Hall bar obtained
from the Hall effect nHall and from the 1/B periodicity of the SdH oscillations nSdH plotted against VTG. The red line depicts the dependence of
the electron mobility μ on VTG.

The InSb QW sample we investigate here is grown on a
(100) GaAs substrate by molecular beam epitaxy (MBE). A
schematic layer sequence is shown in Fig. 1(a). A specialized
interfacial misfit transition to a GaSb buffer and an interlayer
InAlSb buffer is employed to overcome the lattice mismatch
between GaAs and InSb. The total thickness of the buffer
system amounts to roughly 3μm. Then, the 21-nm-thin InSb
quantum well is surrounded by In0.9Al0.1Sb confinement bar-
riers, while the n-type carriers are introduced to the active
region by two Si δ-doping layers incorporated 40 nm below
and above the QW in the barrier, respectively. On the top
of the QW, an In0.9Al0.1Sb layer with a thickness of 180
nm is grown. Finally, a 3-nm-thick InSb capping layer is
employed on the top of the sample to prevent possible oxi-

dization. More details about the MBE growth can be seen in
Ref. [22].

The microfabrication process is similar to our previous
work [23]. A standard Hall bar sample is defined using wet
chemical etching with an etching depth of more than 270 nm,
which is deeper than the Si δ-doping layer on the substrate
side. Layers of Ge/Ni/Au evaporated after an Ar milling
provide the Ohmic contacts. The sample is coated with a
40-nm-thick aluminum oxide (ALO) dielectric layer using
atomic layer deposition (ALD) at a temperature of 150 ◦C .
A high-temperature annealing step is unnecessary because the
metal diffuses into the 2DEG during the heating during the
ALD process. Finally, a Ti/Au top gate covering the Hall bar
is deposited with electron-beam evaporation.
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FIG. 2. The SdH oscillations measured with different tilt angles. The traces have a constant offset of 40 �. The traces with r = 0, 1/2, 1,
and 2 are high lighted with thick lines, together with the corresponding angles. The integer filling factors are labeled with dashed lines. Inset:
The definition of the tilt angle θ .

Figure 1(b) presents an optical image of the sample to-
gether with the schematic diagram of the magnetotransport
measurement configuration. The part of the Hall bar we mea-
sured has a size of 310 × 25 μm2. The transport measurement
is accomplished by using standard low frequency (77 Hz)
lock-in techniques in a cryostat with a base temperature of
1.3 K and a rotatable magnetic field up to 8 T. Figures 1(c)
and 1(d) show the longitudinal and the transverse resistivities
ρxx and ρxy where the top gate voltages VTG are 0 and −1 V,
respectively. Pronounced SdH oscillations in ρxx and quantum
Hall plateaus in ρxy at h/νe2 are visible, where ν is the
filling factor. The inset in Fig. 1(c) shows that the Zeeman
splitting starts from magnetic fields around 1.1 T. This mea-
surement indicates that a single-channel 2DEG system with a
tunable density and a high mobility is embedded in the QW.
Figures 1(e) and 1(f) show the Landau fan diagrams of ρxx

and ρxy, i.e., the dependence of ρxx and ρxy on perpendicular
magnetic field B and VTG. The slight bending of the Landau
fan diagram at high VTG may be caused by the charging of the
capping layer or the barrier layer above the QW. The carrier
density n is calculated through both the linear fitting of the
Hall effect in a small magnetic field window (from −0.3 to
0.5 T) and the 1/B periodicity of the SdH oscillations. As
shown in Fig. 1(g), the carrier density can be tuned from 2 ×
1011 cm−2 to 3.5 × 1011 cm−2 while increasing the mobility
from 1.3 × 105 cm2/(V s) to 3 × 105 cm2/(V s). The gate
capacitance is estimated to be C = 0.32 mF/m2 at the linear
part of the n-VTG line, which is about 40% less than the value

calculated from the plane-parallel capacitor model, which is
similar to the results of our previous work [23] and Ref. [21]
by another group.

In the following, we present our results of the coinci-
dence measurement when n = 3.45 × 1011 cm−2 at VTG =
− 0.1 V. Similar strategies were used for QWs with large
effective g factors before, such as Si/SiGe [24] and InAs [25].
The Landau-level spacing is proportional to the perpendicular
magnetic field B⊥, but the Zeeman energy is proportional to
the total magnetic field Btot. We introduce a parameter r as
the ratio between the Zeeman energy and the Landau-level
spacing, i.e., r = |g∗|μBBtot/h̄ωc. Here ωc = eB⊥/m∗, m∗ is
the effective electron mass, μB is the Bohr magneton, and Btot

is the total magnetic field applied. The inset of Fig. 2 shows
the definition of the tilt angle θ , where θ = 0 corresponds
to a magnetic field perpendicular to the sample surface and
θ = 90◦ means an in-plane magnetic field. With these, we can
achieve B⊥ = cos(θ )Btot and rcos(θ ) = |g∗|m∗/2me, where
me is the free-electron mass. By increasing the angle θ to
90◦, r can be increased continuously. The range of values of
r and θ is experimentally limited by the finite perpendicular
field component B⊥ required to detect SdH oscillations. It
shows the idea of the coincidence method that |g∗|m∗ can be
extracted if we can find situations where both r and cos(θ )
are precisely measured. The inset in Fig. 3(b) describes the
various coincidence situations which are characterized by the
parameter r schematically. At r = 1/2 and 3/2, the Landau
levels with both even and odd filling factors are separated
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FIG. 3. (a) The quantum Hall effect traces with r = 0, 1/2,
1, and 2. The Hall plateaus are labeled with the dashed lines.
(b) Coincidence plot gathered from the angles in Fig. 2. The straight
line has a slope indicating |g∗|m∗ = (0.60 ± 0.07)me. Inset: the vari-
ous coincidence situations which are characterized by the parameter
r, the ratio of the Zeeman and the cyclotron energies. The energy
gaps between even and odd Landau states get opened and closed
periodically.

by the same energy. Consequently, the minima of SdH traces
will occur at both even and odd integer filling factors. On
the other hand, for r = 1 or 2, because two Landau states
with opposite spin directions will have the same energy, the
energy gap between them gets closed. Thus, the longitudinal
resistivity minima only occur at odd or even integer filling
factors. In our experiment, we determine the situations with

the most obvious ρxx minima at both even and odd filling
factors to be r = 1/2 and 3/2 and the situation with the most
pronounced ρxx minima at only even or odd filling factors
to be r = 1 or 2. Figure 2 depicts the measurement results
showing the dependence of ρxx on B⊥ for a continuous change
in θ from 0◦ to 84◦. The value of θ is calibrated with the
slope of the Hall effect in a low magnetic field with a high
accuracy of better than 0.1◦. The thick lines in Fig. 2 show
magnetoresistance traces at specific θ values where the SdH
minima occur only at even integer filling factors (r = 2),
at even and odd filling factors (r = 1/2, 3/2), or only at
odd-integer filling factors (r = 1). The trace with a purely
perpendicular magnetic field (θ = 0, r = 0) is labeled with a
thick line too. Similar to the SdH traces, the disappearance and
the reappearance of the Hall plateaus at even and odd filling
factors can be investigated as a function of increasing θ . As
shown in Fig. 3(a), both even and odd filling factor plateaus
can be seen when r = 1/2 and 3/2, but only odd or even filling
factor plateaus are observed when r = 1 or 2.

One can determine the product of g factor and effective
mass by taking these results into consideration. Figure 3(b)
shows the relation between 1/r and the corresponding cos(θ ).
The error bar is determined by the space of θ values between
the traces with the angles of coincidence (r = 1/2, 1, 3/2,
and 2) and the neighboring traces which do not show the
coincidence. The accuracy of our measurement is mainly
limited by the broadening of the Landau levels, especially
when r = 1/2 and r = 3/2, where the SdH oscillations are not
very pronounced in a low magnetic field regime. This linear
relation indicates that |g∗|m∗ and therefore |g∗| are constant
within our measurement range, i.e., exchange enhancement
effects are not relevant. The slope of the plot shows that
the product of |g∗|m∗ = (0.60 ± 0.07) me. Thus, only the
effective mass is left to measure in order to extract the value
of |g∗|.

In the following, we present the measurement of the effec-
tive mass in the same sample through the temperature depen-
dence of the SdH oscillations in small magnetic fields. With
the increase of the measurement temperature, the amplitude
of the SdH oscillations will decrease until the oscillations
vanish completely. The lower the effective mass is, the higher
the temperature at which the SdH oscillations can still be
observed. This temperature dependence of the SdH oscillation
is well described by a formula in a small magnetic field regime
[26]. Figure 4(a) shows the SdH oscillations for a carrier
density n = 3.44 × 1011 cm−2 measured at temperatures from
1.53 to 15 K. The oscillating part of the resistivity �ρxx is
obtained by subtracting the background of the magnetore-
sistance ρ̄xx. Here we select the local maxima and minima
in the traces of �ρxx vs B as the data points to depict the
envelope of the SdH oscillations. Figure 4(b) presents the fit
of the Dingle factor to ln(�ρxxT0/ ρ̄xxT ), where T0 is the low-
est temperature at which we measured the SdH oscillations
[26]. The obtained effective mass is m∗ ≈ 0.017 me with an
error smaller than 0.001me within the magnetic field range
of the measurement [see the inset of Fig. 4(c)]. Figure 4(c)
shows the fitting to obtain the quantum lifetime using the
effective mass discussed above. We extract a quantum lifetime
τq = 0.10 ± 0.01 ps from the slope obtained from the
linear fitting of the plotting of 1/B vs ln( �ρxx

ρ̄xx
f (B, T )), where
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FIG. 4. Effective mass measurement. (a) Temperature-
dependence of SdH oscillations with n = 3.44 × 1011 cm−2.
(b) Dingle factor fitting with different B. The squares are data
and the lines are fitted curves. (c) The fitting of the quantum
lifetime. Inset: The effective mass obtained from the Dingle factor
fitting vs B.

f (B, T ) = (2π2kBT/h̄ωc)/sinh (2π2kBT/h̄ωc). Considering
the Drude scattering time τD = 2.87 ps calculated from the
Drude model at this carrier density, the Dingle ratio can be
calculated as τD/τq ≈ 29. This value, which is considerably
larger than 1, indicates that our 2DEG is in the regime
where the dominant scattering mechanism originates from
long-range potential fluctuations [26–28]. On the other hand,
we observe that μ ∝ n from magnetotransport measurements.
The linear relationship between μ and n was also observed
in a high-quality asymmetric InSb QW in Ref. [4]. This
implies that background impurity scattering is dominant [29]
which leads to a short-range scattering potential. These two

observations, the large Dingle ratio on the one hand and the
linear behavior of μ versus n on the other hand, are difficult
to reconcile. We would like to point out that a similar situa-
tion is found for InAs quantum wells, where an even larger
Dingle ratio and a sublinear relationship between μ and n are
observed together [30]. On the one hand, we would like to
note that interfaces in InSb quantum wells (as well as in InAs
quantum wells) are rather rough compared to high-quality
GaAs quantum wells. It is unclear in what way interface
roughness scattering plays a role in our present experiments
and how it would influence the relationship between mobility
and density. On the other hand, we speculate that spin-orbit
interactions which are relevant in InSb could play a role here.

Repeating the measurement for n = 3.25 × 1011 cm−2 and
n = 2.9 × 1011 cm−2, we find the effective mass to be
constant and the ratio τD/τq is always ∼29. Combining this
with the coincidence measurement, we conclude that |g∗| =
35 ± 4. Furthermore, we obtain the same results for another
set of coincidence measurements at 90 mK with a lower
carrier density (n = 2.88 × 1011 cm−2).

We compare our results with previous works. The change
of the spin polarization P is defined as P = r/ν. In
Ref. [12], the spin polarization P varied over a wide range,
from 0.07 to 1. By extrapolating the measured g factor to
P = 0, the bare g factor was derived to have a value of
g∗ = 29 for 30-nm QWs and g∗ = 19.5–21.2 for 15-nm QWs.
A similar analysis was made in Ref. [13], where P ranged
from 0.07 to 1 for ν = 7–14 and a slightly higher effective
g factor was derived. Due to the high mobility of our sample,
our coincidence measurement is performed in a regime of
large filling factors where the exchange enhancement can be
neglected. In our measurement, the Landau levels in the InSb
2DEG are distinguishable from r = 1/2 to 2, and the tilt angle
dependence of the SdH oscillations has been investigated from
ν = 5 to 28. These give a range of P from 0.018 to 0.2, where
there is no obvious |g∗| − B⊥ dependence observed. Thus,
we conclude from our estimation that the extracted value of
|g∗| is basically the bare effective g factor of the 2DEGs in
InSb QWs.

Our measurement results can be quantitatively compared to
multiband k · p theory where both the s- and p-like bands are
considered [31]. Due to the confinement of the QW, the band
gap of InSb will have an increase of Eg = π2h̄2/2L2m∗

bulk =
61 meV based on the infinite potential well approximation,
where m∗

bulk ≈ 0.014me is the electron effective mass of bulk
InSb [26,31] and L = 21 nm is the width of the QW. Thus, we
can calculate, as in Refs. [26,31],

me

m∗
0

= 1 + 1

3

2meP2

h̄2

(
2

E0 + Eg
+ 1

E0 + �0 + Eg

)

− 1

3

2meP′2

h̄2

(
2

E ′
0 − E0 + �′

0

+ 1

E ′
0 − E0

)
(1)

and

g∗
0 = 2 − 2

3

2meP2

h̄2

(
1

E0 + Eg
− 1

E0 + Eg + �0

)

+ 2

3

2meP′2

h̄2

(
1

E ′
0 − E0

− 1

E ′
0 − E0 + �′

0

)
, (2)
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FIG. 5. The ρxx and ρxy measurement of the InSb QW grown on
a GaSb wafer in a large magnetic field range at the temperatures of 4
and 0.4 K. The dashed line is an extrapolation of the Hall trace in the
small magnetic field.

where m∗
0 and g∗

0 are the theoretical electron effective mass
and effective g factor in the QW [26]. Here, we adopt
the band-edge parameters E0 = 0.24 eV, E ′

0 = 3.16 eV,
�0 = 0.82 eV, �′

0 = 0.33 eV, P = 0.964 eV nm, and P′ =
0.632i eVnm from Refs. [26,31]. The interpretation of these
parameters can also be found in Ref. [32]. The calculation
shows that the theoretical effective mass of the electrons in the
QW has a value of m∗

0 = 0.0152 me and the effective g-factor
has a value of g∗

0 = −38, which agrees with our measurement
results. We also find that the s-like bands and confinement of
QWs are the dominant factors in our sample that determine
effective mass and g factor.

The high mobility of our sample motivates us to probe
the behavior of the 2DEGs in an even higher magnetic
field, where ν < 1 . We perform a magnetotransport mea-
surement on another Hall bar sample with the same qual-
ity, where the heterostructure is grown on a GaSb wafer
with the same growth and microfabrication. The mobil-
ity is 300 000 cm2/(V s) and the carrier density is 3.31 ×
1011 cm−2. As shown in Fig. 5, measurements at 4 and 0.4 K
reveal similar ρxx and ρxy behaviors at ν < 1, where the
Ohmic contacts still work properly. This implies that the
2DEG is not in an insulating phase. Despite the high quality
of the sample, no fractional quantum Hall effect features
are observable. The broad local minima of ρxx at B = 27
and 33 T are far from the estimated magnetic field values
corresponding to the filling factor values ν = 2/3 and 1/2 and
their locations strongly depend on temperature. Besides, ρxy at

ν < 1 increases above the classical limit, which is indicated
by the dashed line in Fig. 5. Even though the InSb QW
sample measured here exhibits comparably high mobility as
shown in Ref. [22], the impact of disorder or other effects on
the transport behavior in the extreme quantum limit needs to
be further investigated. This raises the question of whether
material-specific properties are responsible for the observa-
tions since a similar behavior has been observed before in an
InSb QW with a mobility of 130 000 cm2/(V s) [33].

For experiments at B = 0 the so-called rs parameter, which
is the ratio between electron-electron interaction energy and
kinetic energy, is a measure for the occurrence of effects that
are related to electron-electron interactions. The rs parameter
for InSb is rather small compared to other materials (GaAs,
graphene, and even InAs) because of the small effective mass
in InSb. The situation in the fractional quantum Hall regime is
more complex since the relevant distance for electron-electron
interactions is the magnetic length lB = (h̄/eB)1/2 which is
independent of material parameters. Still, the ratio between
the Coulmb energy e2/(4πε0εlB) and the kinetic energy 1

2 h̄ωc

in the quantum limit is comparably small in our InSb sample
(0.11 at 20 T) as compared to, e.g., GaAs (0.59 at 20 T). This
cannot, however, fully explain the fact that we do not observe
features of the fractional quantum Hall effect in high-mobility
InSb quantum wells. We speculate that it is the complex
interplay of interaction strength (small effective mass, high
magnetic field) and disorder (see discussion on Dingle ratio,
mobility versus density dependence, interface quality) that
results in the absence of features related to the fractional
quantum Hall effect in our experiments.

In conclusion, we present a measurement of the bare
g factor of an InSb QW with tunable density. Due to the high
mobility, our measurement is accomplished in a low magnetic
field regime where many-body physics can be neglected.
Together with a precise measurement of the effective mass,
the bare effective g factor of our InSb QW is determined to be
|g∗| = 35 ± 4. Furthermore, probing of the electron transport
behavior for filling factors ν < 1 is presented, where the
fractional quantum Hall effect is not observed.
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